Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Article in English | MEDLINE | ID: covidwho-1895234

ABSTRACT

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
2.
J Virol Methods ; 290: 114087, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1051817

ABSTRACT

The development of safe diagnostic protocols for working with SARS-CoV-2 clinical samples at Biosafety Level 2 (BSL2) requires understanding of the effect of heat-treatment on SARS-CoV-2 viability and downstream RT-PCR sensitivity. In this study heating SARS-CoV-2/England/2/2020 to 56 °C and 60 °C for 15, 30 and 60 min reduced the virus titre by between 2.1 and 4.9 log10 pfu/mL (as determined by plaque assay). Complete inactivation did not occur and there was significant variability between replicates. Viable virus was detected by plaque assay after heat-treatment at 80 °C for 15 or 30 min but not 60 or 90 min. After heat-treatment at 80 °C for 60 min infectious virus was only detected by more sensitive virus culture. No viable virus was detected after heating to 80 °C for 90 min or 95 °C for 1 or 5 min. RT-PCR sensitivity was not compromised by heating to 56 °C and 60 °C. However, RT-PCR sensitivity was reduced (≥3 Ct value increase) after heating the virus to 80 °C for 30 min or longer, or 95 °C for 1 or 5 min. In summary we found that the efficacy of heat-inactivation varies greatly depending on temperature and duration. Local validation of heat-inactivation and its effects downstream is therefore essential for molecular testing.


Subject(s)
SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Virus Inactivation , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Hot Temperature , Humans , Sensitivity and Specificity , Time Factors
3.
J Clin Microbiol ; 58(11)2020 10 21.
Article in English | MEDLINE | ID: covidwho-729361

ABSTRACT

The COVID-19 pandemic has necessitated a multifaceted rapid response by the scientific community, bringing researchers, health officials, and industry together to address the ongoing public health emergency. To meet this challenge, participants need an informed approach for working safely with the etiological agent, the novel human coronavirus SARS-CoV-2. Work with infectious SARS-CoV-2 is currently restricted to high-containment laboratories, but material can be handled at a lower containment level after inactivation. Given the wide array of inactivation reagents that are being used in laboratories during this pandemic, it is vital that their effectiveness is thoroughly investigated. Here, we evaluated a total of 23 commercial reagents designed for clinical sample transportation, nucleic acid extraction, and virus inactivation for their ability to inactivate SARS-CoV-2, as well as seven other common chemicals, including detergents and fixatives. As part of this study, we have also tested five filtration matrices for their effectiveness at removing the cytotoxic elements of each reagent, permitting accurate determination of levels of infectious virus remaining following treatment. In addition to providing critical data informing inactivation methods and risk assessments for diagnostic and research laboratories working with SARS-CoV-2, these data provide a framework for other laboratories to validate their inactivation processes and to guide similar studies for other pathogens.


Subject(s)
Betacoronavirus/drug effects , Indicators and Reagents/pharmacology , Virus Inactivation/drug effects , Animals , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Cell Survival/drug effects , Chlorocebus aethiops , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Filtration/instrumentation , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL